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Abstract

The objectives of this study are to clarify the degradation mechanism of chemical substances using wet peroxide oxidation (WPO) unde
mild condition (150 C) and to confirm the removal of polychlorinated biphenyls (PCBs) in soil using this oxidation process. Acetic and oxalic
acids were mineralized using WPO. TOC removal rate of acetic acid was highest in the solution of pH 2.5. However, TOC removal rate was
decreased with the increase in pH and TOC were hardly removed in the solution of pH 7 and 10. The decomposition rate of isobutyric acid by
WPO decreased in the presence of radical scavendr@H). The results suggested that the decomposition of chemical substances using
WPO proceeded by hydroxyl radical (OH radical). PCBs in soil were also decomposed by performing WPQCat 150
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction advanced oxidation process) of various hazardous chemical
compoundg7,8] because they are stable against chemical
Wet oxidation is a wastewater treatment process known oxidation[9] and are mineralized at longer tirfi0,11]. Par-
to decompose organic compounds at high temperature andicularly, acetic and oxalic acids have refractory nature to
high pressure[1-3]. Generally, wet oxidation has been chemical oxidation and they are last intermediates of chem-
studied under the condition of more than 2@ due to ical oxidation of wastewatej12,13] In addition, because
enhanced reactivity at higher temperatufes3]. Contrar- the reactivity of low-molecular-weight carboxylic acids with
ily, with the decrease of temperature, the decomposition rateOH radical are low compared with other organic compounds,
of organic compounds by wet oxidation is either decreased wet peroxide oxidation (WPQO) of low-molecular-weight car-
or stopped4]. In super critical water, blD, is known to boxylic acids is easily affected by radical scaven{r
decompose to hydroxyl radical (OH radicals), which can Therefore, low-molecular-weight carboxylic acids are suit-
decompose hazardous chemical compounds, such as polyable target compounds for evaluating the role of OH radical
chlorinated biphenyls (PCB$%,6]. Consequently, if KO, in WPO. Previously, some studies have been done on WPO
can decompose to OH radicals in water at lower tempera-[1,4,14,15] however, only a few literature deals with the
ture (i.e. 150C), decomposition of hazardous organic com- study of the mechanism involved in the procgk4d5]. Par-
pounds by wet oxidation can be done using milder condi- ticularly, there have been no reported studies about the use of
tions. radical scavenger in studying the mechanism of WPO. The
Low-molecular-weight carboxylic acids are known to objective of this study is to investigate the degradation mech-
be intermediates of the chemical oxidation process (i.e. anism of low-molecular-weight carboxylic acids using WPO
under mild condition (150C). Using this condition, we also
* Corresponding author. Tel.: +81 93 751 9975; fax: +81 93 751 9976.  investigated the removal of PCBs in soil using WPO. From
E-mail address: okawa@fukuoka-u.ac.jp (K. Okawa). the economical point of view, performing WPO at a lower
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temperature for PCB removal in soil will provide a low cost Hydrogen peroxide
for soil remediation of this kind. Distilled water
IEI— Mixer () ; Mixer
ump
2. Experimental A L]
Polluted soil A4

2.1. Materials —

) X

Acetic, oxalic, propionic and isobutyric acids (Wako Shurry tank
Chemicals) were used as the target compounds. In addition,
commercial PCBs, KC-400, KC-500 and KC-600 (GL Sci-
ences) were also used as target compounds. The composition Pump Heater Reactor
of KC-400, KC-500 and KC-600 are shownliable 1 Kanto
loam soil (organic matter content 16%, pH 7.6) was used asFig. 1. Schematic diagram of the reactor used for the removal of PCBs in
soil sample in this study. soil.

in the reactor reached 2.5MPa. After that, the mixture in
the reactor was agitated for 30 min at 500 rpm to treat PCBs
in soil. The PCBs remaining in the treated soil (5g) was
extracted using an accelerated solvent extractor (ASE200,
DIONEX; Solvent:n-hexane (50 mL)) and were analyzed by
gas chromatography.

2.2. WPO of low-molecular-weight carboxylic acids

Three hundred fifty milliliters of distilled water containing
low-molecular-weight carboxylic acids was placed in stain-
less steel reactor (6 cm i.d., 16 cm depth). The solution was
agitated at 500 rpm and heated at 180 The reaction was
done with continuous supply of2®, (50 g/L) at a flow rate
of 1.0 mL/min. The pressure in the reactor was 0.5-1.5 MPa. 2-4 Analytical method

The desired initial pH for every experiment was adjusted ]
by adding HCI or NaOH. WPO of isobutyric acid using the ~ TOC analyzer (TOC-5050A, Shimadzu) was employed to

batch reactor was also carried out in the presencé8olOH measure TOC in the sample solution. Isobutyric acid concen-
(500 mg/L) as radical scavenger. Ten milliliter of the sample tration was measured using ion chromatography (DX-120,
solution was periodically taken from the reactor. Dionex; Column: lonPac AS16). PCBs were analyzed using a
gas chromatograph with an electron capture detector (G2700,
2.3. WPO of PCBs in soil Yanako; Column: Quadrex-MS). GC/MS (Hewlett-Packard

6890; Column: HP-WAX) was used to analyze by-products

Fig. 1displays the schematic diagram of a batch reactor formed during the WPO of propionic acid.
system used for the degradation of PCBs in soil. KC-400,
KC-500 and KC-600 were spiked to soil and then the amount
of KC-400, KC-500 and KC-600 in soil were analyzed to be 3- Result and discussion
137,96 and 108 mg/kg, respectively. Soil contaminated PCBs
and distilled water were mixed in slurry tank and then the 3-1. Degradation of low-molecular-weight carboxylic
specific gravity of slurry adjusted to 1.2 (soil/water=0.35, dcids by WPO
wi/w). One liter of distilled water (pH 2.5) was placed in
stainless steel reactor (15 cm i.d., 28 cm depth) and the water  Before performing this oxidation process it was confirmed
heated until 156C. The slurry containing kD, (100 mg/g that low-molecular-weight carboxylic acids used in this study
soil) was supplied at a flow rate of 0.2 L/min until the pressure c@nnotbe decomposed in heated water (I50Fig. 2shows

Table 1 25
Composition of commercial PCBs
KC-400 Wt%) KC-500 (wt%) KC-600 (Wt%) =07 igceil'{c acig
= xalic aci
Monochlorobiphenyls ~ 0.01 0.008 0.008 oI5t
Dichlorobiphenyls 0.48 0.38 0.23 E
Trichlorobiphenyls 17.47 1.72 0.65 8 10 r
Tetrachlorobiphenyls  51.43 10.31 1.09 =
Pentachlorobiphenyls  27.92 51.80 8.58 Sr
Hexachlorobiphenyls 2.55 32.49 42.34
. 0 L L L 1
Heptachloro_blphenyls 0.14 3.23 39.19 0 20 40 60 80 100
Octachlorobiphenyls 0.00 0.06 7.44 Time (mi
Nonachlorobiphenyls 0.00 0.00 0.47 ime (min)
Decachlorobiphenyls 0.00 0.00 0.006

Fig. 2. TOC removal of acetic and oxalic acids by wet peroxide oxidation.
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Fig. 5. GC/MS chromatogram of propionic acid after 40 min reaction (Col-
umn: HP-WAX (30 mx 0.25 mmx 0.25um)).

rate of isobutyric acid is slower than that with r8uOH.
These results suggest that OH radical resulting from decom-
N ] ] _ position of O, was scavenged bwyBuOH and oxidation

the decomposition of TOC during WPO of acetic and oxalic f jsobutyric acid was prevented. Therefore, this suggested
acids in this system. The pH values of the acetic and oxalic {4t degradation of low-molecular-weight carboxylic acids by
acids solutions were 3.3 and 2.5, respectively. After WPO s oxidation process involves OH radical reactionCtis

at 150°C, TOC in the solution containing acetic and oxalic  known to decompose to OH radicals in super critical water
acids decreased, indicating that acetic and oxalic acids werénai jeads to decomposition of PC[Bs8]. In addition, PCBs,

mineralized using the process. It is reported that acetic andjigxins and endocrine disruptors are known to be mineralized
oxalic acids are stable compounds against oxidation and onlyby OH radical[17-21} Gunten[22] also reported that OH
OH radical can oxidize these compounds in wastewater treat-5 gical have much higher reactivity for any hazardous chem-

ment using advanced oxidati_on procé3ls ) _ . ical compounds than those of other oxidants such as ozone
TOCremovals of acetic acid by the WPO atdifferentinitial 5,4 the rate constants (Ms~1) are 7—10 orders of magni-

pH are shown irFig. 3 TOC removal rate was highestinthe {,qe. Accordingly, it is suggested thag® can decompose
solution at pH 2.5. However, TOC removal rate decreased ;o OH radicals in water even at mild condition. i.e. T&D

with the increase of pH. TOC was hardly removed in the 5nq any hazardous chemical compounds, such as PCBs, can
solution of pH 7 and 10. Itis reported that OH radical rapidly ¢ decomposed using this oxidation process.

Fig. 3. TOC removal of acetic acid by wet peroxide oxidation at different
initial pH.

converted to the conjugated bast0n alkaline solutiorj1],
leading to a loss of the strong Oldxidant.

OH® + OH™ — O°~ +H,0 1)

In addition, O ionizes to HG~ which is strong radical

scavenger in alkaline solutigt6].
H,Op — HO™ + Ht (2)

HO;~ +OH® — OH™ +°0, +H* ©)

GC/MS chromatogram of propionic acid after WPO at
40 min reaction time is presentedkiy. 5. This figure shows
that during the WPO of propionic acid, the main intermediate
product was acetic acid plus a small amount of formic acid, a
result which also supports the hypothesis that decomposition
of low-molecular-weight carboxylic acids using WPO pro-
ceed by OH radical. Itis reported that oxidation of carboxylic
acids proceeds by consecutive oxidation of higher molecular
weight to lower molecular weight carboxylic acids by OH
radical[23]. Gomes et al[24] also reported that propionic

Thus, the decomposition rate of acetic acid decreased withacid is oxidized to acetic acid by OH radical. The reactions

the rise of pH.

Fig. 4 shows the decomposition of isobutyric acid by the

WPO in the presence/absencerdBuOH. In the presence

of -BuOH, which is a radical scavenger, the decomposition cH;C*HCO,H + OH®* — CH3C(OH)HCOH

120

—-O—without t-BuOH

100 —8—with t-BuOH

80
60

(mg/L)

40

Isobutyric acid conc.

20
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Fig. 4. Decomposition of isobutyric acid by wet peroxide oxidation in the
presence/absence ®BUOH.

involved are:
CH3CH2COoH + OH®* — CH3C*HCO.H + HO  (4)

(5)

CH3C(OH)HCQH + O, — CH3COH + COz + H20
(6)

3.2. Degradation of PCBs in soil by WPO

To investigate the application of removal of PCBs in soil
using WPO, oxidation of PCBs in soil were carried out using
this process. After WPO, the remaining PCBs in soil were
extracted byn-hexane and analyzed by GC. The amount
of PCB removed was obtained by difference. Removal of
PCB in soil after WPO for different type of PCBs is shown



K. Okawa et al. / Journal of Hazardous Materials B127 (2005) 68-72 71

Table 2 [2] F. Jin, J. Cao, Z. Zhou, T. Moriya, H. Enomoto, Effect of lignin
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